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RELATION BETWEEN KINETIC PROPERTIES OF SINGLE 

CRYSTALS AND OF ORIENTED POLYCRYSTALLINE 

MATERIALS 

E. A. Mityushov, R. A. Adamesku, 
and P. V. Gel'd UDC 539.22 

It is demonstrated that the characteristics of a single crystal can be calculated 
from available data on the properties and the orientation of polycrystalline 
materials. 

Known methods of evaluating the anisotropy of kinetic properties in polycrystalline 
materials are, as a rule, based on averaging the characteristics of grains over all random 
orientations. The results obtained in this way do not always agree with experimental data, 
among others because those methods do not take into account interaction between micro- 
structural components (grains of polycrystalline material). It is therefore definitely im- 
portant to develop more correct methods for evaluating the anisotropy of kinetic properties 
in polycrystalline materials. 

At the same time, establishment of a proved relation between the k~etic characteristics 
of polycrystalline materials and those of their single crystals will make it possible to also 
solve the reverse problem of determining the properties of single crystals from data on 
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polycrystalline objects more reliably. The problem is generally not solvable for quasi-iso- 
tropic polycrystalline materials, whose properties can be described with a single constant 
parameter each. Only in the case of metals with a cubic crystal lattice, with single crystals 
which are isotropic with respect to given properties, do the properties of these single 
crystals and the properties of the polycrystalline material coincide. Measurements made on 
oriented specimens will, moreover, by virtue of the anisotropy of their physical properties, 
yield sufficiently accurate estimates for the properties of single crystals. 

We will consider one possible way to solve the problem of determining the kinetic charac- 
teristics of single crystals with hexagonal, tetragonal, or trigonal symmetry of the crystal 
lattice from data on the properties of oriented polycrystalline material and from the dis- 
persion of its grain orientation. 

Using a quasi-isotropic material as example, we will first examine calculation schemes 
for determining the effective properties so as to be able then to select the algorithm for 
calculating the properties of its single crystal. 

A relation between effective properties of a polycrystalline material and those of its 
single crystal can be established by equating the various invariants of the second-rank 
tensor which describes the kinetic properties of a polycrystalline material and of its single 
crystal [i]. Equating the first invariants will yield a value of a given property which is 
the average over all orientations. For the thermal conductivity of a quasi-isotropic poly- 
crystalline material with hexagonal, tetragonal, or trigonal crystal lattice, accordingly, 
averaging the first invariant of the thermal conductivity tensor yields the relation 

3k* = 2 k  l + k ~ .  

With the second invariant of the thermal conductivity tensor we obtain 

(I) 

3k *~ = k~ + 2klk3, (2) 

where kx and ks a r e  the  t h e r m a l  c o n d u c t i v i t i e s  o f  a s i n g l e  c r y s t a l  and k* i s  t he  t he rma l  
conductivity of the polycrystalline material. When the third invariants are equal, then 

k * " =  k~ka. (3) 

Analogous relations can be obtained for the thermal resistivities r = l/k: 

3 2 1 3 1 2 1 1 (4) 

k *  = k-T + k. k*' k~ + klk~ k *" kb3 

I t  i s  q u i t e  e v i d e n t  t h a t  c a l c u l a t i o n s  based  on u s i n g  t he  f i r s t  i n v a r i a n t  o r  t he  second 
i n v a r i a n t  w i l l  y i e l d  d i f f e r e n t  v a l u e s  o f  e f f e c t i v e  p r o p e r t i e s  depend ing  on whe the r  t he  t h e r m a l  
conductivity tensor or the thermal resistivity tensor is averaged. Using the third invariant, 
on the other hand, yields the same values. 

The true value of a thermal conductivity must lie between the limits corresponding to 
the various models of a polycrystalline material (the two models of microstructural components 
linked interlinked in series or in parallel, respectively, when calculations are based on the 
first invariant) and it can be defined as the arithmetic mean or the geometric mean of those 
two limiting values. One can, furthermore, analytically demonstrate that using the second in- 
variant will result in a narrower range of values for the thermal conductivity and that with- 
in this range will lie the value obtained by using the third invariant. 

The first invariant and the second invariant yield, respectively, the arithmetic mean 
values 

k,  = 1 ( 2kx-{- ka 3k~k8 ) 
- 2  3 ~- 2ka + k~ ' 

k* = T 3 + k~ + 2kl .' 

(5) 

(6) 
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and the geometric mean values 

k* = V f klk, (2kl + ks) 
(2ks _~_ kl ) , (7) 

; /  k~k3(k~ + 2klks) k*= } -  (ks + 2kI) ' (8) 

The third invariant yields 

k * :  (9) 

Expressions (5)-(9) represent different schemes of formal accounting for intergranular 
interaction. Taking this interaction into account in the determination of thermal Conduc- 
tivities is possible on the basis of the steady-state heat distribution in a micrononhomo- 
geneous medium. One assumes here that the mean value of the thermalflux passing through a 
randomly oriented grain of polycrystalline material is equal to the deterministic value of 
the thermal flux crossing anarea of the macrohomogeneous material with corresponding effec- 
tive properties. A solution of the problem in the correlational approximation yields for an 
oriented material [2] 

k;  : ~1 + (k3 - -  kl) [ i  - -  ( k 3  - -  kI)g ([f  - -  If) 
2kl + k3 

(lO) 

where li = <~13 > 9 and ~i3 is the cosine of the angle between the direction in which measure- 

ment is made and the crystallographic c-axis. For a nonoriented material we have I i = 1/3. 

For illustration, here are results of calculations for effective thermal conductivities 
(Table i) and effective electrical resistivities (Table 2) of several materials. The con- 
stants of single crystals needed for these calculations have been taken from two reference 
sources [3, 4]. 

For calculating the electrical resistivity in the correlational approximation, expression 
(i0) was used after prior change to coefficients of the electrical resistivity tensor. 

The data in these tables indicate that calculations according to relations (5)-(i0) yield 
close or identical results. Therefore, any of these expressions can be used for calculation 
of the kinetic properties. The results indicate, furthermore, that the properties of two 
quasi-isotropic materials can be nearly equal when their single crystals are Oppositely 
anisotropic (such as those of Tb and Bi, Dy and He, Er and Y pairs). 

In the case of an oriented material the limiting values of physical properties corres- 
ponding to various models of the polycrystalline material approach each other [2], which justi- 
fies the use of analogous expressions for evaluating the properties of their single crystals. 

The effective kinetic properties of rolled stock with grain orientation (orthotropic 
symmetry of the material) have three principal values found from expressions [5] 

k~=(k3_kOli+kl" ~ _ (  1 1 ) / , +  l._ 
ks kt kl 

(when two limiting models of the material are used, namely respectively series and parallel 
interlinkages of grains with different orientations). The geometric mean of these values is 

then 

k* V / Skl'l(k3 - -  kl) I, + kl] i = (k l - -ks )  l i - ] -ks  ' ' i =  1, 2, 3. (11 )  

Expression (ii) can be used for solving both the forward problem and the reverse problem 
of relating the properties of an oriented polycrystaliine material to the properties of its 
single crystal. For simplification of the reverse problem, one can additionally use the 

relation 
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TABLE i. Effective Thermal Conductivity (J/m'sec.K) of 
Polycrystalline Materials Calculated According to Various 
Relations 

Material 

Bismuth 
Quartz 
Graphite 

h~ 

6,65 
18 

kl 

9,24 
5 

(5) 

8,28 
7,78 
222 

(6) 

8,28 
7,81 
228 

Relation 

(7) I {8) 

8,28 8,28 
7,83 7,81 
218 227 

(9) 

8,28 
7,81 
224 

I (io) 

8,32 
7,89 
246 

TABLE 2. Effective Electrical Resistivity (~'cm) of 
Polycrystalline Materials Calculated According to Various 
Relations 

Material p~ 

Gd 
Tb 
Dy 
Ho 
Er 
Y~ 

Cd 
Zn 
Sn 
Bi 
Te 59. i0 s 

122 
102 

7~i4 

75 
35 

8,30 
6,13 

?2 

Pl 

139 
123 

100,3 
102 
44 
72 
6,8 
5,91 
9,9 
109 

29-10 s 

(5) 

133 
115,5 
92,0 
8~58 

56 
7,3 

5,98 %2 
37.10 s 

(6) 

133 
115,5 
92,0 
86~o 
57 
7,3 

5,98 
1111~2 

37.108 

Relation 

(7) (8) 

i33 133 
115,5 115,5 
92,0 9~0 
8~58 53 
56 57 
7,3 7,3 

5,98 5,98 
1111'82 UI~ 2 

37.108 37.108 

(9) 

133 
115,5 
92,0 

57 
7,3 
5,98 

l l l l f  
37.108 

(l o1 

133 
115,5 
91,8 
85,2 
51,9 
56 
7,3 
5,98 
11,2 
118 

36.10 s 

kl k2 k3 : k~k3. (12)  

Upon introducing the anisotropy parameters of a single crystal and a polycrystalline 
material 

kx k~' /r 
6 5 ~ .  , A 

we obtain from relations (ii) and (12) 

~2 [A 2& (1 - -  I2) - -  12 (1 - -  11) ] + ~ ( A  2 - -  1) [lff, + (1 - -  Ix) (I - -  Is) ] + A21, (1 - -  Ix) - -  I 1 (1 - -  Is) = 0, 
(131 

k; k~ kS = r (i4) 
As an example of using these expressions, we will show the results of electrical resistivity 
calculations for single-crystal specimens of titanium. 

The input data pertaining to polycrystalline specimens were: Pnp = 48.9 ~'cm, Ppn = 

50.7 ~'cm, Pnn = 54.6 p~'cm, II = 0.098, I2 = 0.270, yielding ~ = 0.81 according to expres- 
sion (13). From an expression similar to expression (14) we obtain Pl = 47.8 p~'cm and p~ = 
59.1 ~'cm, in close agreement with available experimental data on titanium [6] as well as 
with theoretical results which these authors had obtained by another method. 
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MECHANISM FOR BOILING OF A LIQUID IN HEAT PIPE WICKS 

Yu. K. Gontarev, Yu. V. Navruzov, V. F. Prisnyakov, 
and V. N. Serebryanskii UDC 536.423.1 

The authors describe a hypothesis that vapor-generating centers arise in the wicks 
of low-temperature heat pipes and a mechanism for activating these. 

For liquid-metal heat pipes the processes of boiling of liquid in the wicks determine 
the region of crisis-free operation [i]. In the case of low-temperature heat pipes for which 
efficient operation has been confirmed experimentally, both in theevaporation regime and also 
with boiling of liquid in the porous structure, the boiling processes determine the region of 
most intense heat transfer [2, 3]. 

It is known [4, 5] that boiling in a porous structure begins at�9 lower values of 
specific heat flux than does boiling in a large volume. The only �9 explanation for this is 
thought to be the hypothesis that there are sections within the porous layer with a ready 
phase interface to serve as boiling nuclei, a hypothesis first formed in [6] and then in 
[7, 8] and elsewhere. The existence of such nuclei for most types of porous structures used 
as the wicks of�9 heat pipes may Be regarded as quite probable, especially �9 for 
wicks described by a pore size distribution curve, and as experimentally proved [9] for mesh 
structures. However, the data of [6-13] on the number of these nuclei,�9 influence on 
the liquid boiling processes and the activation mechanism are not always physically well 
founded, have low reliability, and are in part contradictory.�9 The result is that �9 it is not 
possible to define specific heat flux regions corresponding to transition from the evaporation 
regime to the boiling regime in heat pipe wicks. 

In this paper we describe a model of a mechanism for individual boiling of a vapor 
nucleus and computational relations based on it that allow one to�9 determine the lower boun- 
dary of the�9 of transition from evaporation to boiling in low-temperature heat pipes, 
The upper boundary of this region, linked with a considerable increase of the heat-transfer 
intensity in developed boiling, can be determined from an equation from [14] giving a good 
description of the test data of [14]. 

In our opinion, the difference of the conditions for individual boiling of a liquid in 
the wicks of heat pipes and in a large volume has two causes: the existence of a solid Body 
in the porous structure and the decrease of liquid pressure in the evaporation zone due to 
the action of capillary forces causing the liquid to move. 

As the first cause, the complexity and spatial branching of the structure of the porous 
material produce local unwetted zones, particularly at places where elements of the body 
touch each other and regions with weak molecular bonding of the liquid and solid phases, 
and these are potential vapor generation centers. They are analogous to the nuclei [15] 
arising in a large volume of liquid on actual (roughened) heat-transfer surfaces in the 
hollows of roughnesses with impaired local wetting. The existence of such nuclei within the 
wick leads to a decrease of the liquid heating (and associated decreased specific heat flux) 
necessary to start boiling. The dimensions of these nuclei, according to [14], are~ close to 
those of the maximum pores of the given porous structure, but the liquid-vapor phase inter- 
face in it is formed at finer pores surrounding the nuclei. This is shown schematically in 
Fig. i. Therefore, the vapor pressure at a nucleus, for not very small radii of curvature of 
the interface surface, when we can neglect its influence on Pvn [16], is larger than the 
pressure of the surrounding liquid by the amount of the capillary pressure arising in these 
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